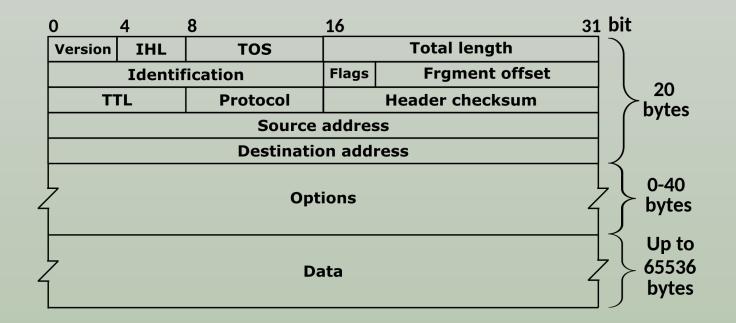

NETWORKING FOR AVL TECHNICIANS 2

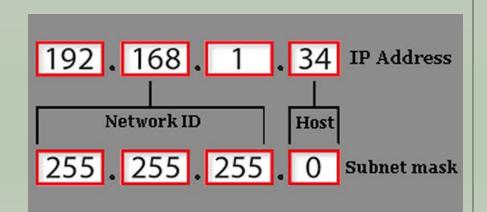
CFI Networking 102


101 Recap

- ISO & TCP/IP Models
- Layer 1 Physical
 - Cables
 - UTP, STP 100M or 330 ft length
 - Single Mode and Multimode Fiber
- Layer 2 Data Link Layer
 - Mac Addresses
 - Switches and VLANs

- IP Protocol
 - Network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet
 - Routing between physical networks or subnets
 - Each network segment has a subnet with an IP range associated with it and a Gateway (router) address
 - A subnetwork or subnet is a logical subdivision of an IP network

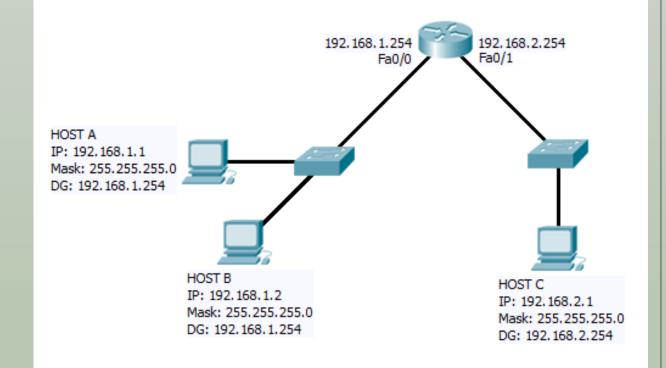
• IP Datagram (Packet)


IPv4 Addressing

- Host IP Address
 - A unique address that identifies a device on the internet or a local network
 - 32 bit address in 4 octets. Each octet can be 1-254
 - 0 is reserved for the network address
 - 255 is reserved for the broadcast address
 - 192.168.1.131 (this laptop)
- Subnet Mask
 - Divides network and host addresses
 - 255.255.255.0
 - 255.255.255 represents the network ID
 - 0 represents the available host addresses
 - 192.168.1.34 with subnet mask 255.255.255.0
 - 192.168.1 is the network ID
 - 1-254 is the available IP addresses for hosts
 - .34 is the specific host
 - CIDR notation 192.168.1.0/24

Network Connection Details

Network Connection Details:


Property	Value
Connection-specific DNS S	
Description	Intel(R) Wi-Fi 6 AX201 160MHz
Physical Address	B4-0E-DE-68-E1-92
DHCP Enabled	Yes
IPv4 Address	192.168.1.131
IPv4 Subnet Mask	255.255.255.0
Lease Obtained	Thursday, February 24, 2022 8:59:25 AM
Lease Expires	Friday, February 25, 2022 8:59:23 AM
IPv4 Default Gateway	192.168.1.1
IPv4 DHCP Server	192.168.1.1
IPv4 DNS Server	192.168.1.1

- IP communication between hosts on a network occurs between hosts on the same network segment from host to host.
- If 2 hosts are on different network segments, then communications flows through the default gateway to bridge the networks together.
- Default Gateway:
- The node in a computer network using the Internet protocol suite that serves as the forwarding host (router) to other networks when no other route specification matches the destination IP address of a packet.

letwork Connection Detail	s
Property	Value
Connection-specific DNS	S
Description	Intel(R) Wi-Fi 6 AX201 160MHz
Physical Address	B4-0E-DE-68-E1-92
DHCP Enabled	Yes
IPv4 Address	192.168.1.131
IPv4 Subnet Mask	255.255.255.0
Lease Obtained	Thursday, February 24, 2022 8:59:25 AM
Lease Expires	Friday, February 25, 2022 8:59:23 AM
IPv4 Default Gateway	192.168.1.1
IPv4 DHCP Server	192.168.1.1
IPv4 DNS Server	192.168.1.1

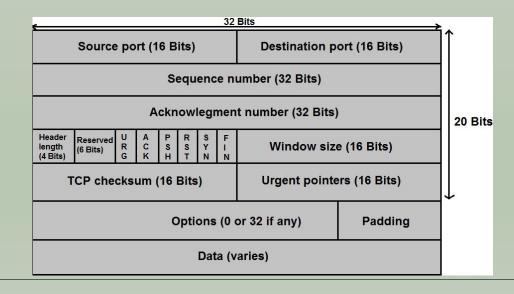
Hosts A and B can communicate with each other directly, however communication to Host C from either A or B must flow through the Default Gateway (router) at 192.168.1.254

Public and Private addresses

- Ip addresses are divided into 2 types, public and private.
- Public IP addresses can be routed throughout the internet
- Private IP addresses cannot cross a router boundary.
 - 10.0.0.0 to 10.255.255.255 (Class A private addresses)
 - 172.16.0.0 to 172.31.255.255 (Class B private addresses)
 - 192.168.0.0 to 192.168.255.255 (Class C private addresses)
- Hosts with private ip addresses communicate with the internet by using NAT
 - NAT Network Address Translation maps a private ip to a public ip for communication
 - Usually happens at network boundary by firewall or router.
 - Home Internet routers offer services such as NAT, DHCP and Firewall services.

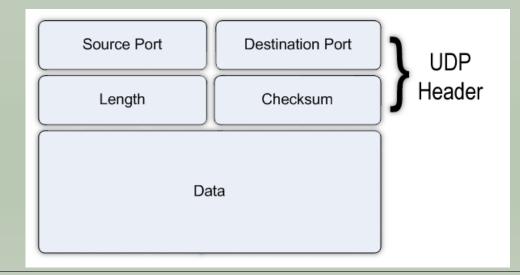
Unicast, Multicast, and Broadcast

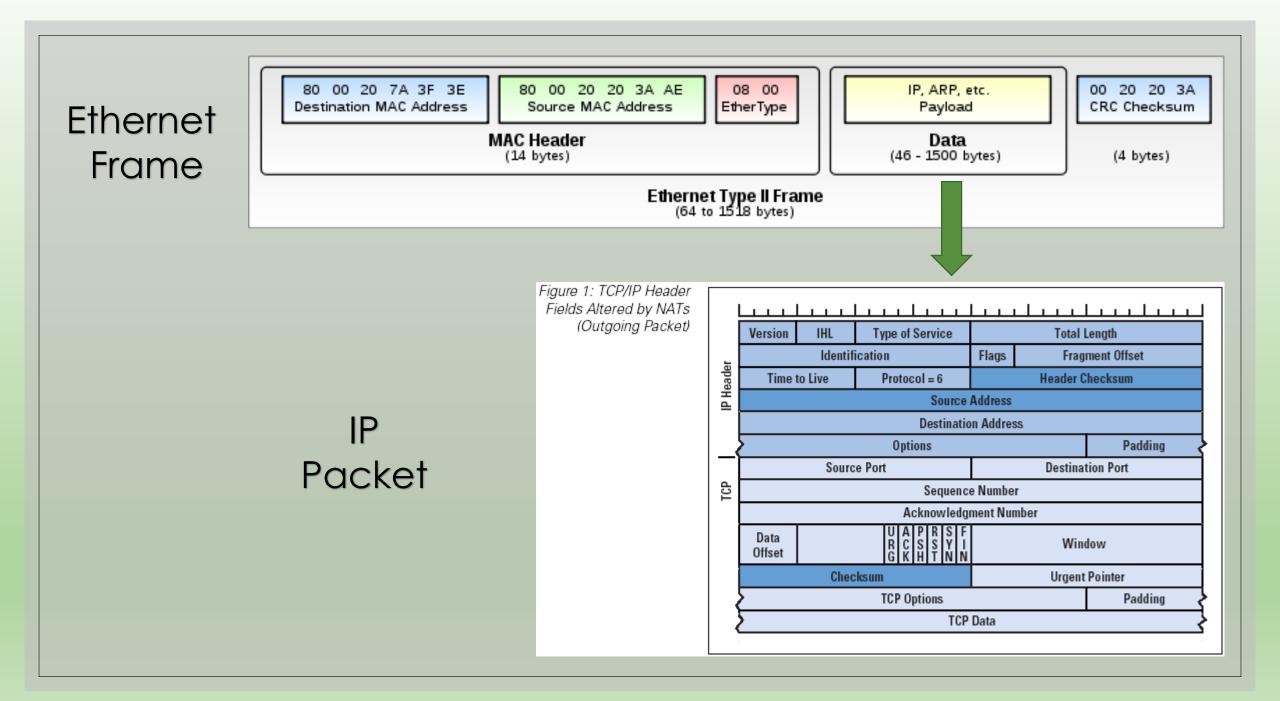
- Unicast connections send IP packets to a specific host on the network
 - Unicast requires bandwidth from sending host for each data stream
- Multicast sends IP packets to a group of hosts on the network that has subscribed to the multicast
 - Multicast only requires bandwidth of host to send one group of packets to group. Network switch sends copies of packets to all subscribers
 - Most often used to send video data because of size of data stream
 - Recommended for Dante data streams to 3 or more destinations
- Broadcast sends IP packets to all hosts on the network
 - DHCP and WOL are examples of broadcasts
 - Broadcasts are dropped at router border (non-routable)


Layer 4 – Transport Layer

TCP – Transmission Control Protocol

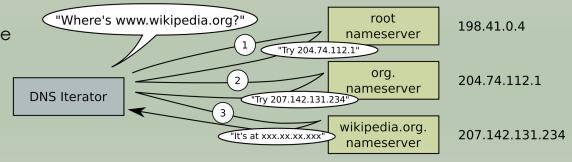
• Connection based


Ę


- Reliable, Ordered and Error Checked
- TCP Datagrams called Packets
- HTTP, FTP, SSH, SMTP

UDP – User Datagram Protocol

- Connectionless
- Fast no error checking
- UDP Datagrams called Packets
- NTP, DHCP, VOIP, Media Transmission (Dante Audio)


Layer 4 – Transport Layer

Packet Sizes

- MTU Maximum Transmission Unit (Packet or Frame Size)
 - 1500 bytes Standard Frame
 - 9000 bytes Jumbo Frame
 - iSCSI SANs –
 - If using jumbo frames all equipment must be configured to use them, (NICs, Switches, and SANs)

Common Protocols

- DHCP Dynamic Host Configuration Protocol
 - Assigns an IP address to a host at startup of host
 - When a host joins the network it sends a broadcast to its network subnet asking for an IP address from a DHCP server.
 - Broadcasts are not routable so broadcasts stay within a particular network segment or subnet
 - DHCP servers allow for reservations to be made associating a mac address to a particular IP, so the host will always receive the same IP.
 - DHCP servers assign IPs for a range of time called the DHCP lease time
- DNS Domain Name System
 - Translates IP addresses into human readable addresses
 - 198.61.250.137 = <u>www.faylib.org</u>
 - DNS names are resolved iteratively in reverse order of name
 - First stop is root DNS servers or "."
 - Second is org DNS servers (or com, co, us, gov, etc)
 - Third is Wikipedia DNS server
 - Fourth is webserver hosting www record for wikipedia

Common Protocols

- mDNS multicast Domain Name System
 - Similar to DNS
 - Resolves IPs to hostnames
 - Local level vs. DNS global level
 - Used in Bonjour, Dante (without Dante Domain Manager), and Clearcom Helixnet
- Zeroconf (zero configuration networking)
 - Uses 169.254.0.0 /16 (169.254.0.0 through 169.254.255.255)
 - Link-local address
 - Within a broadcast domain (network segment) not routable
 - automatic private IP addressing (APIPA)
 - Used in newer OS, and in Dante devices

Common Protocols

• EEE

- Energy Efficient Ethernet
- Reduces power consumption during periods of "low" activity
- AKA Green Ethernet
- Don't use with media applications (Dante, Video, Comms)

Quality of Service

- QoS is the ability of the network to prioritize certain types of network traffic to provide better service and lower latency
 - QoS Queues only take effect when there is network congestion
 - DSCP (Differentiated Services Code Point) (DiffServ = differentiated services)

Priority	Usage	DSCP Label	Hex	Decimal	Binary
High	Time critical PTP events	CS7	0x38	56	111000
Medium	Audio, PTP	EF	0x2E	46	101110
Low	(reserved)	CS1	0x08	8	001000
None	Other traffic	BestEffort	0x00	0	000000

Dante DSCP Values for QoS

Tips

- Separate networks where useful or required by AVL technology specifications
 - Dante doesn't work on same network with Clearcom Helixnet
 - Audinate recommends not using wireless on same network as Dante devices
 - If sending multicast video, the traffic will be quite large and may require separate network from data or voice
 - Extron NAV 1G Codecs ~ 800Mbps per multicast stream
 - Audinate recommends using separate dedicated switch for Dante Secondary redundancy and not VLANs
- Use minimum number of networks necessary don't overburden yourself with too many networks
- Separation of AVL control data is recommended from AVL media data
 - Separation of control network from media networks is recommended
 - Connect control network to wireless network for wireless control of mixers, etc
 - ETC does not recommend connecting lighting network (ETCNet) to other networks, but can have advantages

Links

- <u>https://pro.focusrite.com/configuring-a-switch-for-dante</u>
- https://www.audinate.com/learning/cisco-switch-configuration-guide
- https://www.clearcom.com/DownloadCenter/technicaldocs/HelixNet_IP_Networking_Guide.pdf
- <u>https://support.etcconnect.com/ETC/Networking/General/Network_Design</u>
- https://www.audinate.com/learning/training-certification/dante-certification-program
- https://www.smpte.org/smpte-st-2110-faq
- o <u>https://www.ndi.tv/</u>
- o <u>https://avnu.org/</u>

Thanks for joining us!

- Chris Moody
 - Director, IT/AV and Innovation
 - <u>cmoody@faylib.org</u>

Find more classes and information about the Center for Innovation at: <u>www.faylib.org/innovation</u>

Download this slideshow from the CFI's resource page at: <u>www.faylib.org/center-for-innovation-resources</u>